Knowledge in NLP - Review of Literature
文章目录
- 1. Knowledge Outline
- 2. Leveraging Knowledge Bases in LSTMs for Improving Machine Reading, 2017 ACL
- 3. World Knowledge for Reading Comprehension: Rare Entity Prediction with Hierarchical LSTMs Using External Descriptions, 2017 EMNLP
- 4. A Knowledge-Grounded Neural Conversation Model, 2017 arXive
- 5. Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowledge for Commonsense Machine Comprehension
- 6. Thinking
- 7. Feedback&Advice
[TOC]
Knowledge Outline
- Type: Unstructured、Structured
- Methods: Theory 、Applying
Leveraging Knowledge Bases in LSTMs for Improving Machine Reading, 2017 ACL
Motivation
How to add knowledge base to LSTM
Adaptive attention way
Method
Knowledge-aware Bidirectional LSTMS
Embedding Knowledge Base Concepts
- WordNet and NELL
- (e1, r, e2)
Experiments
Entity Extraction
- Data: ACE2005、OntoNotes 5.0
- Results:
Event Extraction
- Data: ACE2005
- Results:
World Knowledge for Reading Comprehension: Rare Entity Prediction with Hierarchical LSTMs Using External Descriptions, 2017 EMNLP
Knowledge Form (Data)
- Wikilinks Dataset -> Wikilinks Rare Entity Prediction
Model
Double Encoder
Hierarchical Double Encoder
Results
A Knowledge-Grounded Neural Conversation Model, 2017 arXive
Knowledge Form
- (Named Entities, Free-form Text)
- Twitter, Foursquare
Model Architecture
Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowledge for Commonsense Machine Comprehension
Knowledge
- ConcepNet
Model Architecture
Input Layer
- Glove Embeddings, 300d
- Part-of-speech and named-entity embeddings, 12d, 8d
- Relation embeddings, 10d
- Handcrafted Features, 2d
Attention Layer
Output Layer
Experiments
Thinking
- Knowledge Embedding
Feedback&Advice
- Weibo:@伟康青年,@github
- mail:wavejkd@pku.edu.cn